Publication Types:

New modalities of strain-based engineering of ferroelectrics: Domain structure and properties of PbZr1−xTixO3 thin films

Thesis
Joshua C Agar
Ph.D. Thesis University of Illinois at Urbana-Champaign
Publication year: 2015

Epitaxial strain has been widely used to modify the crystal and domain structure, and ultimately the dielectric, ferroelectric, and pyroelectric responses of ferroelectric thin-films for a wide variety of applications including memories, transducers, energy harvesters, sensors, and many more. Traditionally, the ability to engineer materials using epitaxial strain has been confined to a limited range of materials systems which are closely lattice matched to commercially available substrates. In turn, considering the PbZr1−x TixO3system, a model ferroelectric, study of strain effects has been primarily limited to the Ti-rich variants where a wealth of closely lattice matched substrates (∼±1%) exists, enabling nearly-coherently-strained films to be obtained. While these studies have generated a wealth of knowledge on the basic effects of epitaxial strain and have demonstrated the ability to enhance ferroelectric susceptibilities, these improvements have only been incremental. In the present work, we seek to expand the bounds of epitaxial strain engineering through the use of chemistry, controlled epitaxial strain (and relaxation), and compositional and strain gradients with the directive of generating phase competition and high-energy ferroelastic domain structures to enhance ferroelectric susceptibilities. We, for the first time, grow epitaxial thin films of PbZr1−xTixO 3 across the compositional phase diagram, and show that the rate of strain relaxation is significantly enhanced at the morphotropic phase boundary (PbZr0.52Ti0.48O3), as the result of the high adaptability of the crystal and domain structure. Despite the appearance of nearly “relaxed” crystal structures, PbZr0.52Ti 0.48O3 thin films were shown to exhibit significantly different dielectric responses when grown on various substrates. Highlighting the more nuanced effects of partial strain relaxation in tuning ferroelectric susceptibilities. We then proceed to extend the bounds of epitaxial strain by growing compositionally-graded heterostructures which facilitates the retention of strains in excess of 3.5%, large strain gradients (∼4.35×10−5 m −1), and has the ability to stabilize the tetragonal crystal and domain structure, in PbZr1−xTixO3 solid solutions that are rhombohedral in the bulk. Furthermore, we show that by varying the compositional-gradient form (in terms of the nature of the compositional gradient and heterostructure thickness) that it is possible to generate large built-in potentials, which significantly suppresses the dielectric response, but has minimal detrimental impact on the ferroelectric and pyroelectric susceptibilities, giving rise to dramatically enhanced pyroelectric figures of merit. Additionally, we show that the magnitude of the built-in potential does not follow predictions based on the magnitude of the strain gradient alone, and instead, is enhanced by local strain gradients which occur when traversing chemistries associated with structural phase boundaries (where there are abrupt changes in the lattice parameter) and at/near ferroelastic domain boundaries. Finally, we explore the nanoscale response of these ferroelastic domains in compositionally-graded heterostructures using a combination of transmission electron microscopy-based nanobeam diffraction strain mapping and multi-dimensional band-excitation switching spectroscopy. We observe that the presence of compositional and strain gradients can preferentially stabilize highly-energetic, needle-like domains, which under electrical excitation are highly labile in the out-of-plane direction (while remaining spatially fixed in the plane). These labile domain walls act like domain wall springs (enhancing the magnitude of the built-in potential), transferring elastic energy between the a and c domains (depending on the direction of the applied bias), and giving rise to locally enhanced piezoresponse at the a domains, as the result of a switching mechanism where the a domains expand towards the free surface or are nearly excluded from the film (once again, depending on the direction of applied bias). These studies demonstrate the efficacy of compositional and strain gradients as a new modality of strain engineering capable of significantly altering the crystal and domain structure, and ferroelectric susceptibilities of ferroelectric thin films inconceivable in the absence of compositional/strain gradients.

Highly conductive stretchable electrically conductive composites for electronic and radio frequency devices

Thesis
Joshua C. Agar
M.S. Thesis, Georgia Institute of Technology
Publication year: 2011

The electronics industry is shifting its emphasis from reducing transistor size and operational frequency to increasing device integration, reducing form factor and increasing the interface of electronics with their surroundings. This new emphasis has created increased demands on the electronic package. To accomplish the goals to increase device integration and interfaces will undoubtedly require new materials with increased functionality both electrically and mechanically. This thesis focuses on developing new interconnect and printable conductive materials capable of providing power, ground and signal transmission with enhanced electrical performance and mechanical flexibility and robustness. More specifically, we develop: 1.) A new understanding of the conduction mechanism in electrically conductive composites (ECC). 2.) Develop highly conductive stretchable silicone ECC (S-ECC) via in-situ nanoparticle formation and sintering. 3.) Fabricate and test stretchable radio frequency devices based on S-ECC. 4.) Develop techniques and processes necessary to fabricate a stretchable package for stretchable electronic and radio frequency devices. In this thesis we provide convincing evidence that conduction in ECC occurs predominantly through secondary charge transport mechanism (tunneling, hopping). Furthermore, we develop a stretchable silicone-based ECC which, through the incorporation of a special additive, can form and sinter nanoparticles on the surface of the metallic conductive fillers. This sintering process decreases the contact resistance and enhances conductivity of the composite. The conductive composite developed has the best reported conductivity, stretchability and reliability. Using this S-ECC we fabricate a stretchable microstrip line with good performance up to 6 GHz and a stretchable antenna with good return loss and bandwidth. The work presented provides a foundation to create high performance stretchable electronic packages and radio frequency devices for curvilinear spaces. Future development of these technologies will enable the fabrication of ultra-low stress large area interconnects, reconfigurable antennas and other electronic and RF devices where the ability to flex and stretch provides additional functionality impossible using conventional rigid electronics.